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Excitation of secondary instabilities in
boundary layers
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The receptivity to fundamental and subharmonic secondary instabilities is analysed
for two-dimensional boundary layers. Fundamental modes are excited by the direct
scattering of Tollmien–Schlichting (TS) waves over surface variations. The excitation
of subharmonic modes stems from the combined scattering of acoustic free-stream
disturbances and TS waves over surface variations. The surface variations are
localized in their streamwise extent and are the result of roughness or suction. The
velocity field is expanded in terms of small parameters characterizing the acoustic
disturbance and the surface variation. The TS wave is included as part of the base
flow leading to a non-homogeneous system with periodic coefficients governing the
receptivity. The receptivity amplitudes show a strong dependence on the TS-wave
amplitude, and for subharmonic modes a strong dependence on the TS-wave phase at
the location of the surface variation. The receptivity analysis shows a significant bias
toward fundamental modes of secondary instability for larger TS-wave amplitudes
– except for conditions of extremely high free-stream sound level. A combination
of receptivity results and stability results suggests a bias toward subharmonic modes
for TS-wave amplitudes below 0.5% and toward fundamental modes for TS-wave
amplitudes above 0.5% (normalized by the local edge velocity).

1. Introduction
The onset of transition in boundary layers is often characterized by the development

of a primary instability followed by the parametric excitation of secondary instabilities.
For two-dimensional boundary layers at low Mach numbers, the dominant primary
instability is a two-dimensional Tollmien–Schlichting (TS) wave. The initial bias
toward two-dimensional waves results from a combination of larger growth rates
and larger initial amplitudes. Once the two-dimensional wave reaches a significant
amplitude it excites three-dimensional disturbances, which may otherwise be damped.
These three-dimensional secondary instabilities have growth rates much larger than
the initial primary modes, and, in some cases, lead rapidly to transition.

The ultimate occurrence and nature of transition, however, depend on the initial
amplitudes of the disturbances. In the experiments of Saric & Thomas (1984), for
example, different three-dimensional structures are observed for different amplitudes
of the primary TS wave. For branch-II TS-wave amplitudes AII greater than 0.6%
(non-dimensionalized by the local edge velocity), ‘K-type’ fundamental secondary
modes are observed. For amplitudes 0.3% < AII < 0.6%, ‘H-type’ subharmonic
modes are observed (i.e. the secondary modes are subharmonics of the TS wave).
Subharmonic modes of ‘C-type’ (having a specific spanwise wavenumber βc) are
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observed for AII ≈ 0.3%. Finally, if AII < 0.2% the TS wave decays without
significant excitation of three-dimensional modes.

The observations for low amplitudes (AII < 0.6%) can be explained in the context
of the secondary-instability theory of Herbert (1983, 1988). For a given frequency and
Reynolds number, the growth rates for secondary modes depend on the primary-wave
amplitude. Beyond a critical amplitude, the first modes to be excited are subhar-
monic modes with wavenumbers β ≈ βc. As the TS-wave amplitude is increased, the
most unstable wavenumber increases (β > βc) consistent with the observations. The
dominance of the fundamental mode in the experiments for AII > 0.6%, however,
is not fully explained by the secondary-instability theory. While the growth rates of
fundamental modes increase more rapidly with A than do the subharmonic growth
rates, they remain smaller for TS-wave amplitudes less than approximately 3% (Her-
bert 1988). Thus the bias towards fundamental modes for larger TS-wave amplitudes
is likely the result of differences in the receptivity. Herbert (1988) has suggested
that streamwise vorticity in wind tunnels could lead to such a bias. The simulations
of Singer, Reed & Ferziger (1989) for channel flow demonstrate the significant role
of streamwise vorticity in the development of fundamental modes. The dominant
secondary instability switched from subharmonic to fundamental when longitudinal
vortices were added to the initial conditions.

The experiments of Kachanov & Levchenko (1984) are another example where
significant variations in the transition behaviour resulted from different initial am-
plitudes for the two-dimensional primary wave. This behaviour was also seen in
the analysis of Crouch & Herbert (1993) which is based on the nonlinear interaction
of the primary and secondary modes; comparisons between the analysis and the
experiments show good agreement. For small primary-wave amplitudes, no secondary
instability is excited and the primary wave decays downstream of branch II. For
moderate primary-wave amplitudes, the secondary instability grows but has a weak
nonlinear interaction with the primary wave, and both waves ultimately decay without
triggering transition. At larger primary-wave amplitudes, the secondary mode grows
rapidly leading to a strong nonlinear interaction with the primary mode resulting in
transition.

Focusing on the amplitudes required for sustained growth after the nonlinear in-
teraction of the primary and secondary modes, Herbert & Crouch (1990) calculated
threshold amplitudes for transition. The thresholds define minimum initial-amplitude
levels required for these modes to cause transition. For this simplified scenario of
transition due a given set of primary and secondary modes, only the initial amplitudes
are required to predict the occurrence and location of transition. There have been a
number of receptivity analyses dealing with the excitation of two-dimensional primary-
instability modes. The analyses have made use of large-Reynolds-number asymptotic
methods and generalizations of the Orr–Sommerfeld equation. For a detailed discus-
sion, see the reviews of Goldstein & Hultgren (1989), Kerschen (1989), Crouch (1994),
Choudhari & Streett (1994), and Saric, Reed & Kerschen (1994). There have also
been a few studies on the excitation of three-dimensional TS waves. Choudhari &
Kerschen (1990) and Tadjfar & Bodonyi (1992) considered the localized receptivity
resulting from three-dimensional roughness or suction using asymptotic methods.
Crouch & Bertolotti (1992) considered the non-localized receptivity to TS waves due
to surface waviness using a generalization of the Orr–Sommerfeld equation and the
parabolized stability equations. In general, the amplitudes of these three-dimensional
TS waves cannot be related to the required amplitudes for the secondary instabilities.
There is a potential for the Orr–Sommerfeld and Squire modes to feed the secondary
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instability, but for most wavenumbers of interest these modes experience significant
decay prior to the onset of secondary instability. (A notable exception is the inter-
action of an unstable TS wave with a weakly decaying longitudinal vortex leading
to K-type secondary modes.) Other studies have shown that the strongest effective
receptivity for primary modes occurs in the neighbourhood of their lower-branch
neutral points. In the neighbourhood of the secondary-mode neutral point, the para-
metric forcing is already established – thus triggering the growth of the secondary
modes and also altering the receptivity characteristics. For these conditions, special
consideration is needed to determine the initial secondary-instability amplitudes.

The analysis of secondary-instability receptivity requires the proper inclusion of
the two-dimensional primary instability. The finite-amplitude TS wave influences
the receptivity to three-dimensional disturbances through two different mechanisms.
First, the TS wave provides a parametric forcing through an alteration of the linear
operator governing the three-dimensional instability. Thus the TS wave leads to a
modification of the eigenmodes that are to be excited during the receptivity process.
The eigenmodes resulting from the Floquet analysis are generally quite distinct from
the eigenmodes associated with three-dimensional primary instabilities. For example,
the secondary instability occurs over a broad band of spanwise wavenumbers. For
a fixed frequency and Reynolds number, the unstable-mode bandwidth increases
with increasing primary-wave amplitude. In the absence of the parametric forcing,
however, much of the wavenumber spectrum is strongly damped. The disturbance
velocity profiles also differ significantly between primary and secondary modes of
instability. These distinct features of the secondary modes make it difficult to infer
information about the receptivity of secondary modes from a receptivity analysis
of three-dimensional primary instabilities. The second mechanism by which the TS
wave influences the receptivity is through direct scattering. The TS wave provides a
finite-wavelength unsteady source that can scatter sound waves or be scattered by
roughness or suction. Thus the TS wave can directly contribute to the receptivity.

Some of the specific issues related to the receptivity of secondary instabilities are
considered in the works of Bertolotti & Crouch (1992) and Ustinov (1995). Bertolotti
& Crouch considered the non-localized receptivity to two- and three-dimensional
disturbances over a wavy wall by integrating the parabolized stability equations. The
free stream contained both a fundamental and a subharmonic acoustic wave, allowing
for the excitation of both modes of secondary instability. However, no details about
the secondary-mode receptivity were obtained since the work focused on relating the
transition onset to the waviness amplitude without decoupling the receptivity and
instability growth. This decoupling is required for the non-localized receptivity since
the excitation and growth of disturbances both occur over an extended streamwise
distance (Crouch 1992a). Another complication associated with the non-localized
problem is the influence of the initial upstream amplitude of streamwise vortices. The
study of Bertolotti & Crouch demonstrates the importance of quantifying the recep-
tivity to secondary instabilities since the three-dimensional modes are often initiated
in the presence of parametric forcing. Ustinov (1995) considered the excitation of
fundamental secondary instabilities in channel flow. The fundamental modes are ex-
cited directly by the scattering of the primary TS wave, without the need for acoustic
modulation. This leads to a more simplified analysis compared to the subharmonic
receptivity. In the context of the current work, the fundamental-mode receptivity re-
sults from a lower-order interaction as compared to the subharmonic mode. Because
the fundamental mode is excited at lower order, the receptivity provides a potential
bias toward fundamental modes as pointed out by Ustinov. However, the channel-
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flow analysis of Ustinov did not consider the relative strengths of fundamental- and
subharmonic-mode receptivity.

In this paper, we consider the localized receptivity to fundamental and subharmonic
secondary instabilities in boundary layers. The velocity is expanded in terms of
small perturbations characterizing an acoustic free-stream disturbance and a surface
variation due to local roughness or suction. The TS wave is considered to be part of
the basic flow leading to a non-homogeneous set of secondary-instability equations.
These equations contain periodic coefficients due to the presence of the TS wave.
Solution of these equations yields the receptivity over a wide range of parameters
consistent with the stability analysis of Herbert (1988). Fundamental modes are
excited directly by the surface variation as discussed in §3. The analysis leads to
a simple measure for the receptivity of fundamental modes which is independent
of the surface-variation shape. The excitation of subharmonic modes involves the
interaction of an acoustic wave with the surface-generated disturbance; this analysis
is presented in §4. For subharmonic modes, the analysis leads to a measure for
the receptivity which is surface-variation independent only for symmetric variation
shapes. Results for both fundamental and subharmonic modes are presented in §5,
including a discussion on their relative importance for transition. Section 6 presents
some conclusions. The analysis, results and discussion focus on describing the basic
mechanisms and on characterizing their potential relevance for causing transition.

2. Formulation
We consider the local excitation of three-dimensional disturbances in a flat-plate

boundary layer in the presence of a finite-amplitude two-dimensional TS wave. The
three-dimensional disturbances are at the fundamental and subharmonic frequencies
of the initial TS wave and can be related directly to secondary instabilities. Excitation
of the fundamental modes results from the scattering of the TS wave by surface
roughness or suction. Subharmonic modes are excited through the interaction of an
acoustic wave at the subharmonic frequency, steady surface-generated disturbances
containing the appropriate streamwise and spanwise variation, and the TS wave.
Boundary layer velocities (u, v, w) correspond to the streamwise x, surface-normal y,
and spanwise z directions, respectively. All quantities are non-dimensionalized using
the free-stream velocity U∞ and the reference length δr = (νx∗/U∞)1/2, where x∗ is the
streamwise position of the surface variation. This introduces the Reynolds number
R = U∞δr/ν based on the kinematic viscosity ν.

The flow is governed by the three-dimensional incompressible Navier–Stokes equa-
tions. Taking the curl of the momentum equation and using continuity removes
the explicit dependence on pressure yielding the vorticity transport equation. These
are three scalar equations for the vorticity components which can be related to the
velocity through the conditions ∇× v = Ω = (ξ, η, ζ). Taking ∂/∂x of the ζ-vorticity
equation and subtracting ∂/∂z of the ξ-vorticity equation leads to the generalized
Orr–Sommerfeld equation:

MOS [v] + NOS [v, v] = 0, (2.1a)

MOS [v] =

(
1

R
∇2 − ∂

∂t

)
∇2v, (2.1b)

NOS [v, v] = − ∂

∂x
(v · ∇)ζ +

∂

∂x
(Ω · ∇)w +

∂

∂z
(v · ∇)ξ − ∂

∂z
(Ω · ∇)u. (2.1c)
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Taking ∂/∂z of the η-vorticity equation leads to the generalized Squire’s equation:

MSQ[v] + NSQ[v, v] = 0, (2.2a)

MSQ[v] =

(
1

R
∇2 − ∂

∂t

)
∂η

∂z
, (2.2b)

NSQ[v, v] = − ∂

∂z
(v · ∇)η +

∂

∂z
(Ω · ∇)v. (2.2c)

In the incompressible limit, an acoustic free-stream disturbance at the subharmonic
frequency, ω̂ = ω/2, leads to the boundary condition

u→ 1 + ε cos ω̂t as y →∞. (2.3)

The small parameter ε represents the acoustic amplitude. Surface roughness leads to
the boundary condition

u = v = w = 0 at y = δH(x)eiβz, (2.4)

and surface suction is represented by the condition

u = w = 0, v = −δH(x)eiβz at y = 0. (2.5)

The small parameter δ corresponds to a non-dimensional roughness height in (2.4)
and a non-dimensional suction velocity in (2.5).

We first separate the velocity into a prescribed base flow consisting of the Blasius
profile and the TS wave, and an unknown three-dimensional disturbance

v(x, y, z, t) = v0(y) + Av1(x, y, t) + v3(x, y, z, t). (2.6)

The Blasius flow v0 is subject to the quasi-parallel approximation which neglects the
slow streamwise divergence of the boundary layer. This approximation is justified by
the short streamwise distance over which the receptivity occurs and by the condition
that δ is small. Crouch & Spalart (1995) show that the analysis for the receptivity to
TS waves, following this approximation, is in good agreement with direct numerical
simulations. The TS wave has the form

v1(x, y, t) = vTS (y)ei(αx−ωt) + v†TS (y)e−i(αx−ωt) (2.7)

where † represents the complex conjugate. The amplitude A is defined as the
maximum r.m.s. of the TS-wave streamwise-velocity fluctuation. The r.m.s. level
is used to be consistent with earlier stability analyses. Substituting (2.6) into (2.1a)
and (2.2a) and defining new linear operators L[v] = M[v] + N[v, v0] + N[v0, v] and
P[v] = N[v, v1] + N[v1, v] yields

LOS [v3] + APOS [v3] = −NOS [v3, v3], (2.8)

LSQ[v3] + APSQ[v3] = −NSQ[v3, v3]. (2.9)

Neglecting the right-hand-side terms of (2.8) and (2.9) and imposing homogeneous
boundary conditions yields the linear secondary-instability equations considered by
Herbert (1988). In order to apply the Floquet theory, the small-amplitude variation
of the TS wave is neglected over the region of receptivity (i.e. we consider αi = 0).
Although this condition is only strictly satisified at the TS-wave neutral points, results
from the stability theory support its application over the full streamwise region of
interests. By introducing a coordinate transformation X = x − ct, where c is the
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phase speed of the TS wave, the temporal dependence of the operators POS and
PSQ is removed. The coefficients of these operators are then periodic in the variable
X. Following Floquet theory (Herbert & Bertolotti 1985), the solution to the linear
stability equations can be written as

BeσteγXeiβz

∞∑
n=−∞

vn(y)einα̂X . (2.10)

The characteristic exponent is denoted by γ and α̂ = α/2. These modes can be
separated into fundamental, subharmonic, and detuned modes. Here we focus on the
fundamental and subharmonic modes. Separating out these modes and imposing the
conditions for spatial growth, the fundamental secondary instability has the form

vF (x, y, z, t) = BFeγxeiβz
∑
n even

vn(y)ein(α̂x−ω̂t), (2.11)

and the subharmonic instability has the form

vS (x, y, z, t) = BSeγxeiβz
∑
n odd

vn(y)ein(α̂x−ω̂t), (2.12)

where we have imposed σ = γc for spatial growth (Herbert & Bertolotti 1985). The
most unstable secondary-instability mode is tuned to the TS wave. Focusing on the
most unstable mode, γ and the entire coefficient of exp(iβz) in (2.11) and (2.12) are
real (Herbert 1984). The relative magnitudes of the functions vn are fixed by the
eigensolution, each being scaled by the amplitude B.

3. Analysis for fundamental secondary instabilities
For the excitation of fundamental modes, we seek a solution of (2.1a)–(2.5) of the

form of (2.6) with

v3(x, y, z, t) = δvδ(x, y, z, t). (3.1)

A homogeneous free-stream boundary condition is applied since the subharmonic
acoustic wave does not directly couple with the fundamental mode. An O(ε) acoustic
wave at the fundamental frequency could also excite the fundamental mode, similar
to the subharmonic excitation discussed in §4. However, this would occur at higher
order (i.e at O(εδ)) and is likely to be a weaker mechanism for typical values of ε.
Substituting (3.1) into (2.8), (2.9), (2.4), and (2.5) and collecting coefficients of δ yields

LOS [vδ] + APOS [vδ] = 0, (3.2)

LSQ[vδ] + APSQ[vδ] = 0, (3.3)

uδ, vδ, wδ → 0 as y →∞, (3.4)

uδ = −
(
∂u0

∂y
+ A

∂u1

∂y

)
H(x)eiβz, vδ = wδ = 0 at y = 0, (3.5)

or

vδ = −H(x)eiβz, uδ = wδ = 0 at y = 0. (3.6)

The wall boundary condition (3.5) is used for the problem of surface roughness and
(3.6) is used for surface suction. We have made use of the condition δ � 1 to move
the roughness boundary condition from y = δH(x) exp(iβz) to y = 0 via a Taylor
expansion.
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The surface variation produces steady and unsteady disturbance fields at O(δ). We
represent the surface-variation function H(x) by the Fourier integral

H(x) =
1

2π

∫ ∞
−∞
H̃(k)eikxdk, (3.7)

where

H̃(k) =

∫ ∞
−∞
H(x)e−ikxdx. (3.8)

The resulting velocity field can be written as

vδ(x, y, z, t) = eiβz
∑
n even

e−inω̂t 1

2π

∫ ∞
−∞
ṽδn(k, y)eikxdk. (3.9)

The steady disturbance field generated by the flow over the surface irregularity is given
by ṽδ0. This is similar to the disturbance considered in earlier works (see for example
Crouch 1992b). In addition, there are unsteady velocity components generated by the
scattering of the TS wave, ṽδn, |n| > 0. The unsteady disturbances are characterized
by the frequency ω = 2ω̂, providing a direct coupling with the fundamental secondary
instability.

Substituting (3.9) into (3.2)–(3.6) yields a coupled set of equations for the functions
ṽδn(k, y), n even. The equations for ṽδn(k, y) are coupled to the equations for ṽδn−2(k−
2α̂, y) and ṽδn+2(k+2α̂, y) due to the interaction with the TS wave – vTS (y) and v†TS (y),
respectively. To illustrate the coupling with the surface geometry H(x), we consider
the roughness boundary condition (3.5) for the uδ velocity component. Substituting
for uδ , u1, and H(x) and applying harmonic balance yields

ũδ0(k, y) = −∂u0

∂y
H̃(k), (3.10a)

ũδ2(k + 2α̂, y) = −A∂uTS
∂y

H̃(k), (3.10b)

ũδ−2(k − 2α̂, y) = −A∂u
†
TS

∂y
H̃(k), (3.10c)

ũδn(k + nα̂, y) = 0, |n| > 2 at y = 0. (3.10d)

For the coupled set of velocity functions, the transform of the surface-geometry
function appears in the boundary condition evaluated at a single wavenumber.
Solution of the non-homogeneous equations (3.2)–(3.6) yields the functions ṽδn(k +
nα̂, y) for a given value of k as prescribed by the boundary conditions.

Considering only a few terms of the summation on n, (3.9) can be rewritten as

vδ(x, y, z, t) = eiβz 1

2π

∫ ∞
−∞

(
· · ·+ ṽδ−2(k − 2α̂, y)ei(k−2α̂)x+i2ω̂t

+ṽδ0(k, y)eikx + ṽδ+2(k + 2α̂, y)ei(k+2α̂)x−i2ω̂t + · · ·
)

dk. (3.11)

This integral is evaluated using contour integration. The integration contours can be
closed in the upper half-plane since we are interested in the disturbance downstream
of its source, x > 0. Sufficiently far from the source, the total disturbance will be dom-
inated by the least-stable secondary-instability eigenmode. The contribution to this
eigenmode is given by 2πi times the residues at the poles nα̂−iγ (n even) when k = −iγ:

vf(x, y, z, t) = ieiβz
∑
n even

e−inω̂tṽδn(nα̂− iγ, y)ei(nα̂−iγ)x. (3.12)
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When γ > 0, the poles lie in the lower half-plane and causality requires that the
inversion contour pass below these poles. Note that the functions ṽδn(nα̂ − iγ, y), for
different values of n, are related since they correspond to a single eigenfunction as
given by (2.11) (the amplitude BF multiplies the entire Fourier series). Therefore,
it is sufficient to evaluate the residue associated with the function ṽδ2(2α̂ − iγ, y) in
order to determine the instability amplitude. The functions for n < 0 are complex
conjugates of the functions for n > 0. The results presented in §5 are based on
low-order truncations of the Fourier series.

Introducing a measure for the fundamental-mode response residue

KF = 2ũδ2(2α̂− iγ, ymax)/H̃(−iγ), (3.13)

where ymax is the location of maximum disturbance magnitude and noting that
vF = δvf , the fundamental secondary-instability amplitude can be written as

BF = δ|KFH̃(−iγ)|. (3.14)

The value of KF provides a measure of the receptivity, independent of the shape of the

surface variation. H̃(−iγ) is the Fourier transform of H(x) evaluated at the complex
wavenumber associated with the steady component (n = 0) of the fundamental mode.
The amplitude BF provides the secondary-instability response which can be used to
make estimations about transition. Note that BF is defined as a magnitude for a given
Fourier component, while the TS-wave amplitude A is defined as an r.m.s. level.

4. Analysis for subharmonic secondary instabilities
The excitation of subharmonic secondary instabilities requires a higher-order inter-

action than the fundamental modes. We seek a solution of (2.1a)–(2.5) of the form of
(2.6) with

v3(x, y, z, t) = εvε(x, y, t) + δvδ(x, y, z, t) + εδvεδ(x, y, z, t). (4.1)

This expansion is similar to those considered for receptivity to TS waves. The
O(ε) disturbance is generated by the acoustic wave and the O(δ) disturbance is the
result of the surface variation. The interaction of the acoustic and surface-generated
disturbances at O(εδ) then produces an unsteady disturbance with length and time
scales that may match those of the three-dimensional boundary-layer instabilities.
Unlike expansions considered for TS waves, the O(ε) function depends on x and the
O(δ) function depends on t. The O(ε2) and O(δ2) disturbances are not included in
(4.1) since their contributions to the receptivity occur at higher order; this can be
verified by harmonic balance.

Substituting (4.1) into (2.8), (2.9), and (2.3)–(2.5) and collecting coefficients of like
powers in ε and δ yields

Order ε:

LOS [vε] + APOS [vε] = 0, (4.2)

LSQ[vε] + APSQ[vε] = 0, (4.3)

uε → 1/2(eiω̂t + e−iω̂t), vε, wε → 0 as y →∞, (4.4)

uε = vε = wε = 0 at y = 0; (4.5)

Order δ:

LOS [vδ] + APOS [vδ] = 0, (4.6)
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LSQ[vδ] + APSQ[vδ] = 0, (4.7)

uδ, vδ, wδ → 0 as y →∞, (4.8)

uδ = −
(
∂u0

∂y
+ A

∂u1

∂y

)
H(x)eiβz, vδ = wδ = 0 at y = 0, (4.9)

or

vδ = −H(x)eiβz, uδ = wδ = 0 at y = 0; (4.10)

Order εδ:

LOS [vεδ] + APOS [vεδ] = −NOS [vε, vδ]−NOS [vδ, vε], (4.11)

LSQ[vεδ] + APSQ[vεδ] = −NSQ[vε, vδ]−NSQ[vδ, vε], (4.12)

uεδ, vεδ, wεδ → 0 as y →∞, (4.13)

uεδ = −
(
∂uε

∂y

)
H(x)eiβz,

vεδ = −
(
∂vε

∂y

)
H(x)eiβz, wεδ = 0 at y = 0, (4.14)

or

uεδ = vεδ = wεδ = 0 at y = 0. (4.15)

The wall boundary conditions (4.9) and (4.15) are used for the problem of surface
roughness, (4.10) and (4.15) are used for surface suction. We have made use of the
condition δ � 1 to move the roughness boundary condition from y = δH(x) exp(iβz)
to y = 0. In the limit of A = 0, (4.2)–(4.15) reduce to the localized receptivity
equations for TS waves considered by Crouch (1992b).

The O(ε) flow is decoupled from the disturbance generated by the surface variation.
This component of velocity represents the Stokes flow induced by the acoustic wave
of frequency ω̂ in the presence of the TS wave and can be written in the form

vε(x, y, t) =
∑
l even

(
vεl(y)eilα̂xe−i(l+1)ω̂t + c.c

)
, (4.16)

where c.c. signifies complex conjugate. In the travelling frame, this forced velocity
has the form of (2.10) with γ = β = 0 and a detuning of σi = −ω̂. The detuning
requires the inclusion of the complex conjugate in order for the velocity to be real.
The components with l = 0 form the Stokes wave and the components with l ± 2
are O(εA) disturbances generated due to the direct interaction of the Stokes wave
and the TS wave. The magnitude and phase of the profiles are set by the condition
uε0 → 1/2 as y →∞.

The surface variation produces steady and unsteady disturbance fields at O(δ).
We represent the surface-variation function H(x) by the Fourier integral (3.7). The
resulting velocity field can be written as

vδ(x, y, z, t) = eiβz
∑
m odd

e−i(m−1)ω̂t 1

2π

∫ ∞
−∞
ṽδm(k, y)eikxdk. (4.17)

The use of m odd, in contrast to (3.9), is motivated by the form of the subharmonic
modes (2.12) which are considered at O(εδ). The steady disturbance field generated
by the flow over the surface irregularity is given by ṽδ1. This is similar to the steady
disturbance considered in (3.9). The unsteady velocity components generated by the
scattering of the TS wave are given by ṽδm, |m − 1| > 0. The unsteady disturbances
are characterized by the frequency ω = 2ω̂ and its superharmonics. Therefore,
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these unsteady disturbances do not directly couple with the subharmonic secondary
instabilities.

In order to determine the form for the O(εδ) velocity, we consider a single term
on the right-hand side of (4.11). This can be represented by the scalar product fεgδ ,
where f and g are velocities, or derivatives of velocities, corresponding to (4.16) and
(4.17), respectively. Using (4.16) and (4.17), the scalar product is given by

fε(x, y, t) gδ (x, y, z, t)

= eiβz
∑
n odd

e−inω̂t
∑
m odd

(
1

2π

∫ ∞
−∞
fεn−m(y)g̃δm(k + (m− n)α̂, y)eikxdk

+
1

2π

∫ ∞
−∞
f
†
εm−n−2(y)g̃δm(k + (m− n− 2)α̂, y)eikxdk

)
. (4.18)

The resulting velocity field can be written as

vεδ(x, y, z, t) = eiβz
∑
n odd

e−inω̂t 1

2π

∫ ∞
−∞
ṽεδn(k, y)eikxdk. (4.19)

Each value of n represents a different frequency and the corresponding velocity fields
are given by Fourier integrals. Note that the velocities for the different n are coupled
through the periodic operators of (4.11) and (4.12).

The surface geometry is coupled to the O(εδ) function through the right-hand
sides of (4.11) and (4.12) and, for roughness, through the boundary condition (4.15).
Following the discussion in §3, we consider the ũεδ boundary condition. Substituting
for uεδ , uε, and H(x) and applying harmonic balance yields

ũεδn(k, y) = −∂uεn−1

∂y
H̃(k − nα̂+ α̂)

−∂u
†
ε−n−1

∂y
H̃(k − nα̂− α̂) at y = 0. (4.20)

The function ũεδ1(k, y) is coupled to the functions ũεδn, n 6= 1, evaluated at different
values of the wavenumber. Considering each function evaluated at the appropriate
wavenumber for coupling, (4.20) becomes

ũεδn(k + (n− 1)α̂, y) = −∂uεn−1

∂y
H̃(k)

−
∂u
†
ε−(n−1)−2

∂y
H̃(k − 2α̂) at y = 0. (4.21)

For a given value of k, H̃(k) appears in the boundary conditions evaluated at two
different wavenumbers. Consideration of the right-hand sides of (4.11) and (4.12)
yields a similar result.

After determining the functions ṽεδn(k, y) for a given H̃(k), the integral (4.19) can
be evaluated similar to (3.9). Downstream of the source, the subharmonic disturbance
is dominated by the least-stable eigenmode corresponding to the poles at nα̂ − iγ (n
odd)

vs(x, y, z, t) = ieiβz
∑
n odd

e−inω̂tṽεδn(nα̂− iγ, y)ei(nα̂−iγ)x. (4.22)

The resides at different values of n are coupled through the eigenfunction (2.12) and
the functions for n < 0 are complex conjugates of the functions for n > 0.
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For symmetric surface perturbations, H̃(−α̂− iγ) = H̃†(α̂− iγ) and a simple measure
for the subharmonic-mode receptivity can be evaluated. If the scattering due to the
TS wave is neglected (N = 1 as discussed in §5.1), noting that vS = εδvs the
subharmonic-instability amplitude can be written as

BS = εδ|KSH̃(α̂− iγ)|. (4.23)

The value of KS is given by

KS = 2ũεδ1(α̂− iγ, ymax)/H̃(α̂− iγ), (4.24)

where ymax is the location of maximum disturbance magnitude. This value of KS

provides a measure of the receptivity, independent of the surface variation shape

(except for the assumption of symmetry). H̃(α̂− iγ) is the Fourier transform of H(x)
evaluated at the complex wavenumber associated with the subharmonic mode (n = 1)
of the secondary instability. The amplitude BS provides the secondary-instability
response over the full range of spanwise wavenumbers and TS-wave amplitudes
covered by the Floquet theory.

At the subharmonic-mode neutral point, γ ≡ 0 and the assumption of a symmetric

surface perturbation yields H̃(−α̂) = H̃(α̂). For this condition, the form for BS given
in (4.23) is also valid when the TS-wave scattering is included (N > 1 as considered in
§5.1). Most of the results presented in §5 neglect the TS-wave scattering. To evaluate
the relative strength of the TS-wave scattering compared to other secondary-instability
effects, results are given for γ ≈ 0.

5. Receptivity results for secondary instabilities
For a given basic flow, the secondary-instability characteristics depend on: the

frequency F = 106ων/U2
∞, the Reynolds number R, the spanwise wavenumber b =

103β/R, and the TS-wave amplitude A. The excitation of subharmonic modes
depends, in addition, on the relative phase between the acoustic wave and the TS
wave at the source location ψTS . Since the intention of this work is to understand the
basic mechanism of secondary receptivity and its potential relevance for transition,
we focus our results on two frequencies F = 124 and F = 56. The frequency F = 124
was considered in the experiments of Kachanov & Levchenko (1984) and has since
been studied extensively in the context of subharmonic secondary instabilities (see
Herbert 1988). Our stability results at this frequency can easily be compared to earlier
works. The two-dimensional TS wave at F = 124 grows from a Reynolds number
of RI = 381 up to RII = 606. The frequency F = 56 was initially considered in the
receptivity experiments of Leehey & Shapiro (1980) and meanwhile has been studied
in numerous receptivity analyses. This frequency is also close to F = 58.8 which
was considered by Klebanoff, Tidstrom & Sargent (1962) and Herbert (1985) in the
context of fundamental secondary instabilities. The two-dimensional TS wave at this
frequency grows from RI = 576 to RII = 1105. We focus on Reynolds numbers
at, or near, branch II where the TS-wave amplitude is largest. Depending on the
amplitude of the TS wave, the secondary instability can grow for a significant distance
downstream of RII .

Additional parameters are introduced when solving for the growth or receptivity
characteristics numerically. After introducing the Fourier expansions for the dis-
turbance velocities, the resulting governing equations are solved using a spectral
collocation method. The unbounded boundary-layer domain y ∈ [0,∞) is first trans-
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N γ |KF | arg(KF )

2 0.01008420 0.00304 5.880
4 0.01012255 0.00302 5.866
6 0.01012176 0.00302 5.866

N γ |KS | arg(KS )

1 −0.00001738 0.0790 2.555
3 −0.00000323 0.0784 2.556
5 −0.00000309 0.0784 2.556

Table 1. Growth rate γ and response residue K for different levels of truncation N

formed into a bounded domain η ∈ [1, 0) using the algebraic mapping η = η∗/(y+η∗),
where η∗ is a parameter controlling the distribution of points across the boundary
layer. Odd Chebyshev polynomials are used as expansion functions that automatically
satisfy homogeneous boundary conditions at infinity. This requires that we transform
the boundary conditions from infinity to the wall when solving for the acoustic dis-
turbance. The results presented are based on 30 collocation points with η∗ = 4.5,
which positions half of the collocation points within the displacement thickness of
the boundary layer. A further increase in the resolution produces insignificant change
in the results. For the conditions discussed in §5.1, an increase in the number of
collocation points from 30 to 40 resulted in a 0.04% change in the growth rate and
less than 0.02% change in the response residue.

5.1. Truncation of the Fourier series

Numerical evaluation for the stability and receptivity requires that the summations
on n, in the Floquet theory, be truncated to some finite level N. For subharmonic
instabilities (i.e. (2.12), (4.19), (4.22)), the lowest possible truncation is |n| 6 N = 1.
This truncation includes the modes ṽεδ−1 and ṽεδ1. For fundamental instabilities (i.e.
(2.11), (3.9), (3.12)), the lowest truncation is |n| 6 N = 2, which includes ṽδ−2, ṽδ0, and
ṽδ2. Herbert, Bertolotti & Santos (1986) showed that the Fourier series converged
rapidly with increased N, and that N = 1 and N = 2 are sufficient for analysing
the stability of subharmonic and fundamental modes, respectively. This is further
demonstrated by the spatial growth rates γ presented in table 1 for the conditions
b = 0.33, R = 606, A = 0.01 (fundamental mode), R = 404, A = 0.005 (subharmonic
mode). When N is changed from 2 to 4, the fundamental-mode growth rate changes
by 4 × 10−5 (less than 0.4%). The subharmonic-mode growth rate changes by
approximately 1× 10−5 between N = 1 and N = 3.

For fundamental-mode receptivity, no significantly new physics are added when
increasing the value of N. The truncation influences the receptivity primarily through
changes to the eigenmode. This is in contrast to subharmonic modes where additional
physics are included when increasing from N = 1 to N = 3. To be consistent with a
truncation of |n| 6 N for the O(εδ) subharmonic disturbance (4.22), the O(ε) acoustic
disturbance (4.16) is truncated to |n| 6 N − 1, and the O(δ) surface-generated
disturbance (4.17) to |n − 1| 6 N − 1. For the lowest possible subharmonic-mode
truncation of N = 1, the acoustic disturbance is truncated to |n| 6 0, which neglects
the scattering of the acoustic wave by the TS wave. A truncation of N = 1
also neglects the scattering of the TS wave by the surface irregularity. The lowest
subharmonic-mode truncation that includes the TS-wave scattering effects is N = 3.
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Figure 1. Spatial growth rates for the dominant fundamental mode at
F = 124, R = 606, A = 0.005, 0.008, 0.01.

Table 1 shows the effects of the Fourier truncation on the response residue for both
fundamental and subharmonic modes. The changes in the fundamental-mode residue
are less than 1% for N > 2. The magnitude of the subharmonic-mode response
residue also changes by less than 1% when increasing N from 1 to 3. Note that
the parameters for table 1 (N odd) are chosen such that γ ≈ 0 and, therefore, the
results for |KS | are physically meaningful for N > 1. The change in the subharmonic
response is a combination of the additional scattering contributions and the changes
to the stability characteristics. These results demonstrate that the influence of the
TS-wave scattering on the subharmonic modes is small compared to the dramatic
effects of the TS-wave parametric forcing.

The results of table 1 show that truncations of N = 2 and N = 1 are sufficient
for capturing dominant effects on the receptivity of fundamental and subharmonic
modes, respectively. Although N = 3 is required to completely capture the receptivity
to subharmonic secondary instabilities, a truncation of N = 1 provides the essential
trends in the receptivity level. The results presented are based on N = 2 and N = 1.
Variations of less than 1% are generally not discernible in the plotted results.

5.2. Results for fundamental secondary instabilities

Spatial growth rates for fundamental modes at different TS-wave amplitudes and
different spanwise wavenumbers are presented in figure 1. The Reynolds number is
R = 606 and the frequency is F = 124. These growth rates are in good agreement
with temporal growth rates that are transformed into spatial growth using the wave
speed. More detailed comparisons to earlier stability analyses are discussed in §5.3
for subharmonic modes. One of the key features of the fundamental-mode instability
is the rapid drop in the growth rate as the TS-wave amplitude is decreased.

Figure 2 shows the response residue for receptivity to roughness and suction at the
conditions of figure 1. The symbols correspond to the wavenumbers for maximum
growth at each TS-wave amplitude. Except for the very low wavenumbers, the residue
variation with wavenumber is small. The peak receptivity occurs at the intermediate
TS-wave amplitude. At small amplitudes, the receptivity drops off significantly. Thus
for fundamental modes, both the receptivity and growth rate are much smaller for
small TS-wave amplitudes. The receptivity variation with amplitude is shown more
clearly in figure 3 for a single spanwise wavenumber b = 0.33. The peak value occurs
at A ≈ 0.0075. The reduction in the residue for larger values of A is offset by the
significant increase in the growth rate; this is not the case for smaller values of A. Thus
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Figure 2. Magnitude of the response residue for fundamental-mode receptivity due to
(a) roughness or (b) suction, for the conditions F = 124, R = 606, A = 0.005, 0.008, 0.01.
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Figure 3. Magnitude of the response residue for fundamental-mode receptivity due to roughness,
for the conditions F = 124, R = 606, b = 0.33.

the experimentally observed bias toward higher TS-wave amplitudes for fundamental
modes is supported by the combined influence of receptivity and instability growth.

5.3. Results for subharmonic secondary instabilities

Before discussing the general results for subharmonic-mode receptivity, we briefly
consider the spatial stability and receptivity for A ≈ 0. Figure 4 shows the variation
of the growth rate γ as a function of the primary-wave amplitude A at the Reynolds
number R = 606. The spanwise wavenumber was chosen to satisfy Craik resonance
(Craik 1971). This wavenumber has the strongest growth for small TS-wave am-
plitudes. The two curves are the least-stable eigenmodes predicted by the Floquet
theory. Both modes are phased locked with the TS wave. At A = 0, the two modes
collapse to an unstable three-dimensional TS wave with growth rate γ0. Note that
in general the corresponding TS wave at A = 0 may be damped. Results similar to
figure 4 have been presented by Herbert (1983), based on temporal-stability theory.
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Figure 4. Spatial growth rates for dominant γ+ (solid) and related γ− (dashed) subharmonic
modes at F = 124, R = 606, b = 0.1827.
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Figure 5. Magnitude of the response residue for dominant γ+ (solid) and related γ− (dashed)
subharmonic modes due to roughness at F = 124, R = 606, b = 0.1827.

In the neighbourhood of A = 0, the growth rates are described by γ± ≈ γ0 ± ∆γA,
where ∆γ = 4.3 for these conditions. For A ≈ 0, the two modes of figure 4 have
comparable growth rates (γ+ ≈ γ−). Therefore, both modes must be included when
considering the receptivity. For larger values of A, the γ+ mode has much stronger
growth and the γ− mode can be neglected in evaluating the response residues. The
variation of the response residues |KS | for the modes γ± are shown in figure 5. The
corresponding phases are nearly constant over this range of amplitudes, arg(KS ) ≈ 2.9
for γ+ and arg(KS ) ≈ 4.4 for γ−. This result is for a TS-wave phase of ψTS = 0; the
relative magnitude of the two modes changes with different values of ψTS . The results
of figure 5 show that the response residue for the dominant secondary-instability
mode decreases with increasing TS-wave amplitude A. This trend is observed for both
surface roughness and surface suction for all amplitudes of interest, A 6 1%. The
rate of variation of the residue strongly depends on the phase ψTS .

Before considering the dependence of the receptivity on the spanwise wavenumber,
figure 6 shows the variation of the spatial growth rate for the dominant mode at
R = 606. Temporal growth rates for these conditions are given in Herbert (1984).
A good comparison between the two results is obtained using the phase speed to
transform between temporal and spatial growth. These results are also in agreement
with the spatial growth rates of Herbert & Bertolotti (1985). Figure 6 shows that
the maximum growth rate and the corresponding wavenumber both increase with
increasing TS-wave amplitude. The response residues for localized roughness and
suction are given in figure 7 for the conditions of figure 6. The range of wavenumbers
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Figure 6. Spatial growth rates for dominant subharmonic mode at
F = 124, R = 606, A = 0.002, 0.005, 0.01.

roughly corresponds to the range of unstable modes for these conditions. Roughness
results are presented for different TS-wave amplitudes with ψTS = 0. The magnitude
of the residue shows a general increase with increasing spanwise wavenumber. The
symbols show the residue at wavenumbers for maximum growth bmax at the different
amplitudes. At the larger amplitudes, the response residue changes very little in the
neighbourhood of bmax. For A = 0.2%, the receptivity at the higher wavenumbers
b > bmax is 2–5 times larger than at the lower wavenumbers b < bmax. This bias
suggests that wavenumbers larger than bmax are likely to be more dominant in
transition than wavenumbers smaller than bmax when TS-wave amplitudes are small.
The response residue for localized suction is based on ψTS = π. This phase is
closer to the phase for maximum localized-suction receptivity at these conditions.
The response is largest for b > bmax. However, the level of variation around bmax
is small compared to roughness receptivity and is not likely to significantly bias the
initial disturbance spectrum. The relative magnitude between the response residue for
roughness and suction is similar to results for receptivity to TS waves (Choudhari &
Streett 1992).

The most significant parameter influencing the subharmonic-mode response residue
is the TS-wave phase at the source location, ψTS . At a given Reynolds number,
spanwise wavenumber, and TS-wave amplitude, there exists a phase ψTS for which
the response residue goes to zero. Figure 8 shows the variation of |KS | with ψTS for
different Reynolds numbers with b = 0.33, A = 0.005. The residue has one maximum
and one zero (i.e. half-period) over one period of the TS wave. The maximum and zero
locations depend weakly on the Reynolds number. The variation of the magnitude
with Reynolds number is somewhat more significant for suction than roughness.

The influence of the phase between the acoustic wave and the TS wave can be
represented explicitly by defining a maximum response residue

|KS |max = max
ψTS
|KS |. (5.1)

The subharmonic-mode amplitude then becomes

BS = εδ|H̃(α̂− iγ)| |KS |max cos((ψTS − ψTSmax)/2), (5.2)

where ψTSmax corresponds to |KS | = |KS |max. The value of ψTSmax depends on
the frequency, the Reynolds number, the spanwise wavenumber, and the TS-wave
amplitude. Figure 9 shows the variation of |KS |max with Reynolds number for
different values of the TS-wave amplitude. The symbols show the neutral points
for the different amplitudes. For small TS-wave amplitudes, |KS |max decreases with
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Figure 7. Magnitude of the response residue for subharmonic-mode receptivity due to (a) roughness
with ψTS = 0, or (b) suction with ψTS = π, for the conditions F = 124, R = 606, A = 0.002, 0.005,
0.01.

increasing Reynolds number and the maximum effective receptivity occurs upstream
of the neutral points. For larger TS-wave amplitudes, there is no significant variation
with Reynolds number and the maximum effective receptivity will occur at the neutral
points. The TS-wave amplitude does not significantly change the value of ψTSmax for
larger Reynolds numbers. At R = 600, ψTSmax ≈ 0 for roughness and ψTSmax ≈ 2.4
for suction over the range of TS-wave amplitudes considered in figure 9. However, at
R = 400 ψTSmax varied from 5.3 to 5.9 for roughness and from 1.0 to 1.8 for suction.
In general, the TS-wave amplitude will vary during the streamwise evolution of the
secondary mode; this amplitude variation is not included in the results of figure 9.

The strong dependence of KS on ψTS stems from the need for phase locking
between the primary and secondary-modes for parametric resonance. The phase
locking was observed in the experiments of Kachanov & Levchenko (1984) and in
the numerical simulations of Zang & Krist (1989). Zang & Krist considered the effect
of the initial phase of the secondary-mode in plane channel flow. A change in the
initial phase (away from the optimum) delays the parametric resonance until the
secondary disturbance undergoes a phase adjustment. Downstream the disturbance
grows according to secondary-instability theory showing no dependence on the initial
phase. The net result of the change in initial phase is an effective change in the
initial amplitude. Thus the secondary-mode phase is fixed by the primary mode,
and is not arbitrary as for primary instabilities such as TS waves. The excitation of
the subharmonic secondary mode stems from the interaction of the acoustic wave
with the surface-generated disturbance. This interaction leads to a forcing with a
particular phase orientation. For TS-wave receptivity, the forcing phase sets the
phase of the excited instability. However, since the secondary-mode phase is set by
the primary mode, the forcing phase influences the strength of the receptivity. The
strongest forcing occurs when the forced response is in phase with the instability. As
the parametric forcing is reduced, A→ 0, the dependence on ψTS is removed.
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Figure 8. Magnitude of the response residue for subharmonic-mode receptivity due to (a)
roughness, or (b) suction, for the conditions F = 124, R = 400, 500, 600, b = 0.33, A = 0.005.

5.4. Relative magnitudes of fundamental and subharmonic modes

We now consider the potential influence of the receptivity in determining the type of
breakdown that occurs in the Blasius boundary layer. The focus is on the scattering
mechanisms discussed in §§3 and 4. These are expected to be the dominant mechanisms
for relatively quiet free-stream environments. Fundamental modes are excited by a
direct scattering of a TS wave due to surface roughness (or suction). For a given
TS-wave amplitude and roughness geometry, the fundamental-mode amplitude scales
with the roughness height as described by (3.14). The excitation of subharmonic
modes involves the scattering of an acoustic wave by the surface roughness (or
suction). The subharmonic-mode amplitude, for a given TS-wave amplitude and
roughness geometry, scales with the product of the roughness height and the acoustic
amplitude, (4.23). Combining (3.14) and (4.23), the fundamental-mode amplitude
will be greater than the subharmonic-mode amplitude at the roughness location
if

|KFH̃(−iγ)| > ε|KSH̃(α̂− iγ)|. (5.3)

For comparison purposes, we assume that the Fourier transform evaluated at the
two wavenumbers is of similar magnitude. The relative amplitudes of the modes
then reduces to a ratio of |KF | to |εKS |. Smaller free-stream sound levels pro-
vide a bias toward fundamental modes. This is in contrast to the potential role
of free-stream vorticity. In wind tunnels with large contraction ratios, the flow
may contain high levels of streamwise vorticity. This vorticity may couple di-
rectly to the fundamental modes, as suggested by Herbert (1988). Thus an in-
crease in the level of free-stream vorticity may enhance the bias toward fundamental
modes.

For the conditions F = 124, R = 606, b = 0.33 and A = 0.01, figures 2 and 7 give
|KF | = 0.0061 and |KS | = 0.058. The fundamental mode will have the larger initial
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Figure 9. Magnitude of the response residue, maximized over the TS-wave phase ψTS , for
subharmonic-mode receptivity due to (a) roughness or (b) suction for the conditions F = 124,
b = 0.33, A = 0.002, 0.003, 0.005, 0.008.

amplitude for acoustic amplitudes ε less than 0.1. For the conditions F = 124, R = 606,
b = 0.33 and A = 0.005, figures 2 and 7 give |KF | = 0.0006 and |KS | = 0.074. For
this TS-wave amplitude, the initial amplitude of the fundamental mode will be larger
if ε < 0.008. These acoustic amplitudes are much greater than those encountered in
flight or in wind tunnels. These results show the significant receptivity bias toward
fundamental modes. However, the growth characteristics must also be considered in
order to understand the relevance of the receptivity bias in effecting transition.

To help generalize the discussion, we consider additional results at the frequency
F = 56. Figure 10 shows the growth rates for the fundamental and subharmonic
modes at F = 56, R = 950, b = 0.20. The fundamental-mode growth rate changes
more with the TS-wave amplitude A, but the subharmonic growth rate remains larger
over the range of A considered. Figure 11 gives the response residues due to roughness
for the fundamental and subharmonic modes. The shape of the curves, and the actual
levels, are similar to those for F = 124.

We now estimate the relative strength of the fundamental and subharmonic modes
at transition for F = 56. The localized receptivity occurs after growth of the
two-dimensional primary wave. Transition is assumed to occur after a secondary-
instability fetch of ∆R = 200. This distance is based on experimental observations:
fundamental modes are generally characterized by a shorter fetch than subharmonic
modes in the experiments. An approximate n-factor for the secondary modes is given
by N = 2γ̄∆R, where γ̄ is an average growth rate. The fundamental mode will be
dominant at transition for acoustic amplitudes

ε < (|KF |/|KS |) exp(NF −NS ), (5.4)

where the subscripts on N correspond to fundamental and subharmonic modes.
Since the relevant parameters vary weakly with Reynolds number in the neighbour-
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Figure 10. Spatial growth rates for dominant fundamental and subharmonic modes at
F = 56, R = 950, b = 0.20.
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Figure 11. Magnitude of the response residue for (a) fundamental and (b) subharmonic receptivity
to roughness at F = 56, R = 950, b = 0.20. Subharmonic response is maximized over the TS-wave
phase ψTS .

hood of the TS-wave branch II, we consider values calculated at R = 950. For
TS-wave amplitudes of A = 0.015 and A = 0.005, the fundamental mode will be
dominant for ε < 0.018 and ε < 0.00015, respectively. Yet smaller TS-wave am-
plitudes will lead to smaller threshold values for ε. Therefore, under quiet-tunnel
conditions, fundamental modes are expected to be dominant for A > 0.005; for
A < 0.005, subharmonic modes would be dominant. These estimates are based on
secondary-mode receptivity due to roughness (or suction) and free-stream acoustic
disturbances. Other receptivity sources, such as free-stream vorticity, may play an
equal (or greater) role in determining the dominant modes of secondary instabil-
ity. Nonetheless, the estimates presented here are in general agreement with the
observations of Saric & Thomas (1984).
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6. Conclusions

The localized receptivity to secondary instabilities has been analysed for both
fundamental and subharmonic modes. The fundamental modes are excited through
the scattering of the finite-amplitude TS wave. Subharmonic modes are excited
through the scattering of an acoustic free-stream disturbance in the presence of the
TS wave. The amplitude of the fundamental mode is given by the product of: the
roughness height (or suction velocity), the Fourier transform of the surface variation
evaluated at the imaginary wavenumber given by the spatial growth rate, and a
response residue associated with poles of the secondary instability. The subharmonic
mode amplitude is given by the product of: the acoustic amplitude (at the subharmonic
frequency), the roughness height (or the suction velocity), the Fourier transform of the
surface variation evaluated at the subharmonic-mode wavenumber, and a response
residue associated with a pole of the subharmonic instability.

Results show a receptivity bias toward fundamental modes. This bias is overcome
for small TS-wave amplitudes due to a reduction in the fundamental-mode receptivity
and a reduction in the fundamental growth rate. In flight, or in quiet wind tunnels,
fundamental modes are likely to be the dominant mode of secondary instability for
TS-wave amplitudes above A ≈ 0.005 at the receptivity location. For amplitudes
below A ≈ 0.005 subharmonic modes are likely to be dominant.

Calculated receptivity amplitudes for secondary instabilities show a significant
dependence on the amplitude of the primary TS wave. For A < 0.005, the initial
amplitudes of subharmonic modes (maximized over the TS-wave phase) can be
50% smaller than amplitudes estimated from the receptivity of corresponding three-
dimensional primary modes. Actual receptivity amplitudes can vary by an order of
magnitude depending on the amplitude and phase of the TS wave. For 0.005 < A <
0.008, the initial amplitudes of fundamental modes can also vary by an order of
magnitude depending on A. Over a range of larger TS-wave amplitudes, 0.008 < A <
0.02, the initial amplitudes of fundamental modes vary by a factor of 2. In practice,
a factor of 2 variation in the secondary-mode amplitude may not be important.
However, an order of magnitude variation could significantly alter the predicted
transition location based on an interaction of primary and secondary modes.

The author has benefited from discussions with Rahul Sen of the Boeing Commer-
cial Airplane Group and from the detailed comments of the reviewers.
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